Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Mol Biol Cell ; 35(6): ar79, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598294

RESUMEN

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Peptidoglicano , Simbiosis , Simbiosis/fisiología , Aliivibrio fischeri/fisiología , Aliivibrio fischeri/metabolismo , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Appl Environ Microbiol ; 90(3): e0099023, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315021

RESUMEN

Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.


Asunto(s)
Cefalópodos , Microbiota , Humanos , Animales , Femenino , Cefalópodos/genética , Filogenia , ARN Ribosómico 16S/genética , Decapodiformes/microbiología , Genitales/microbiología , Bacterias/genética , Simbiosis
3.
J Bacteriol ; 206(2): e0037023, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38270381

RESUMEN

Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.


Asunto(s)
Aliivibrio fischeri , Biopelículas , Animales , Humanos , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adhesinas Bacterianas , Decapodiformes/microbiología , Simbiosis , Polisacáridos
4.
Environ Microbiol ; 25(12): 3269-3279, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37828645

RESUMEN

Perturbations to host-microbe interactions, such as environmental stress, can alter and disrupt homeostasis. In this study, we examined the effects of a stressor, simulated microgravity, on beneficial bacteria behaviours when colonising their host. We studied the bacterium Vibrio fischeri, which establishes a mutualistic association in a symbiosis-specific organ within the bobtail squid, Euprymna scolopes. To elucidate how animal-microbe interactions are affected by the stress of microgravity, squid were inoculated with different bacterial strains exhibiting either a dominant- or sharing-colonisation behaviour in High Aspect Ratio Vessels, which simulate the low-shear environment of microgravity. The colonisation behaviours of the sharing and dominant strains under modelled microgravity conditions were determined by counting light-organ homogenate of squids as well as confocal microscopy to assess the partitioning of different strains within the light organ. The results indicated that although the colonisation behaviours of the strains did not change, the population levels of the sharing strains were at lower relative abundance in single-colonised animals exposed to modelled microgravity compared to unit gravity; in addition, there were shifts in the relative abundance of strains in co-colonised squids. Together these results suggest that the initiation of beneficial interactions between microbes and animals can be altered by environmental stress, such as simulated microgravity.


Asunto(s)
Aliivibrio fischeri , Ingravidez , Animales , Simbiosis , Estrés Fisiológico , Decapodiformes/microbiología
5.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423402

RESUMEN

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Asunto(s)
Decapodiformes , Interleucina-17 , Vibriosis , Vibrio , Animales , Humanos , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/inmunología , Filogenia , Vibriosis/inmunología , Vibriosis/veterinaria , China
6.
Elife ; 122023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145113

RESUMEN

To colonize a host, bacteria depend on an ensemble of signaling systems to convert information about the various environments encountered within the host into specific cellular activities. How these signaling systems coordinate transitions between cellular states in vivo remains poorly understood. To address this knowledge gap, we investigated how the bacterial symbiont Vibrio fischeri initially colonizes the light organ of the Hawaiian bobtail squid Euprymna scolopes. Previous work has shown that the small RNA Qrr1, which is a regulatory component of the quorum-sensing system in V. fischeri, promotes host colonization. Here, we report that transcriptional activation of Qrr1 is inhibited by the sensor kinase BinK, which suppresses cellular aggregation by V. fischeri prior to light organ entry. We show that Qrr1 expression depends on the alternative sigma factor σ54 and the transcription factors LuxO and SypG, which function similar to an OR logic gate, thereby ensuring Qrr1 is expressed during colonization. Finally, we provide evidence that this regulatory mechanism is widespread throughout the Vibrionaceae family. Together, our work reveals how coordination between the signaling pathways underlying aggregation and quorum-sensing promotes host colonization, which provides insight into how integration among signaling systems facilitates complex processes in bacteria.


Asunto(s)
Proteínas de Unión al ADN , Simbiosis , Animales , Proteínas de Unión al ADN/metabolismo , Aliivibrio fischeri/genética , Percepción de Quorum , Factores de Transcripción/metabolismo , Decapodiformes/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Microbiome ; 11(1): 68, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004104

RESUMEN

BACKGROUND: Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS: The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS: The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.


Asunto(s)
Aliivibrio fischeri , Vibrio , Animales , Aliivibrio fischeri/genética , Simbiosis/fisiología , Decapodiformes/microbiología , Decapodiformes/fisiología , Desarrollo Embrionario , Mamíferos
8.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809081

RESUMEN

The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio , Animales , Aliivibrio fischeri , Sistemas de Secreción Tipo VI/metabolismo , Simbiosis , Decapodiformes/microbiología , Ecosistema
9.
mBio ; 14(1): e0213122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656023

RESUMEN

Developmental processes in animals are influenced by colonization and/or signaling from microbial symbionts. Here, we show that bacteria from the environment are linked to development of a symbiotic organ that houses a bacterial consortium in female Hawaiian bobtail squid, Euprymna scolopes. In addition to the well-characterized light organ association with the bioluminescent bacterium Vibrio fischeri, female E. scolopes house a simple bacterial community in a reproductive organ, the accessory nidamental gland (ANG). In order to understand the influences of bacteria on ANG development, squid were raised in the laboratory under conditions where exposure to environmental microorganisms was experimentally manipulated. Under conditions where hosts were exposed to depleted environmental bacteria, ANGs were completely absent or stunted, a result independent of the presence of the light organ symbiont V. fischeri. When squid were raised in the laboratory with substrate from the host's natural environment containing the native microbiota, normal ANG development was observed, and the bacterial communities were similar to wild-caught animals. Analysis of the bacterial communities from ANGs and substrates of wild-caught and laboratory-raised animals suggests that certain bacterial groups, namely, the Verrucomicrobia, are linked to ANG development. The ANG community composition was also experimentally manipulated. Squid raised with natural substrate supplemented with a specific ANG bacterial strain, Leisingera sp. JC1, had high proportions of this strain in the ANG, suggesting that once ANG development is initiated, specific strains can be introduced and subsequently colonize the organ. Overall, these data suggest that environmental bacteria are required for development of the ANG in E. scolopes. IMPORTANCE Microbiota have profound effects on animal and plant development. Hosts raised axenically or without symbionts often suffer negative outcomes resulting in developmental defects or reduced organ function. Using defined experimental conditions, we demonstrate that environmental bacteria are required for the formation of a female-specific symbiotic organ in the Hawaiian bobtail squid, Euprymna scolopes. Although nascent tissues from this organ that are involved with bacterial recruitment formed initially, the mature organ failed to develop and was absent or severely reduced in sexually mature animals that were not exposed to microbiota from the host's natural environment. This is the first example of complete organ development relying on exposure to symbiotic bacteria in an animal host. This study broadens the use of E. scolopes as a model organism for studying the influence of beneficial bacteria on animal development.


Asunto(s)
Aliivibrio fischeri , Microbiota , Animales , Genitales , Simbiosis , Animales Salvajes , Decapodiformes/microbiología
10.
Appl Environ Microbiol ; 88(22): e0163522, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342139

RESUMEN

Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates after 72 h. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research. IMPORTANCE From soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between V. fischeri and its squid host, Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Animales , Aliivibrio fischeri/genética , Decapodiformes/microbiología , Simbiosis , Fosfatos , Biopelículas
11.
mBio ; 13(4): e0167122, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35916402

RESUMEN

During colonization of the Hawaiian bobtail squid (Euprymna scolopes), Vibrio fischeri bacteria undergo a lifestyle transition from a planktonic motile state in the environment to a biofilm state in host mucus. Cyclic diguanylate (c-di-GMP) is a cytoplasmic signaling molecule that is important for regulating motility-biofilm transitions in many bacterial species. V. fischeri encodes 50 proteins predicted to synthesize and/or degrade c-di-GMP, but a role for c-di-GMP regulation during host colonization has not been investigated. We examined strains exhibiting either low or high levels of c-di-GMP during squid colonization and found that while a low-c-di-GMP strain had no colonization defect, a high c-di-GMP strain was severely impaired. Expression of a heterologous c-di-GMP phosphodiesterase restored colonization, demonstrating that the effect is due to high c-di-GMP levels. In the constitutive high-c-di-GMP state, colonizing V. fischeri exhibited reduced motility, altered biofilm aggregate morphology, and a regulatory interaction where transcription of one polysaccharide locus is inhibited by the presence of the other polysaccharide. Our results highlight the importance of proper c-di-GMP regulation during beneficial animal colonization, illustrate multiple pathways regulated by c-di-GMP in the host, and uncover an interplay of multiple exopolysaccharide systems in host-associated aggregates. IMPORTANCE There is substantial interest in studying cyclic diguanylate (c-di-GMP) in pathogenic and environmental bacteria, which has led to an accepted paradigm in which high c-di-GMP levels promote biofilm formation and reduce motility. However, considerably less focus has been placed on understanding how this compound contributes to beneficial colonization. Using the Vibrio fischeri-Hawaiian bobtail squid study system, we took advantage of recent genetic advances in the bacterium to modulate c-di-GMP levels and measure colonization and track c-di-GMP phenotypes in a symbiotic interaction. Studies in the animal host revealed a c-di-GMP-dependent genetic interaction between two distinct biofilm polysaccharides, Syp and cellulose, that was not evident in culture-based studies: elevated c-di-GMP altered the composition and abundance of the in vivo biofilm by decreasing syp transcription due to increased cellulose synthesis. This study reveals important parallels between pathogenic and beneficial colonization and additionally identifies c-di-GMP-dependent regulation that occurs specifically in the squid host.


Asunto(s)
Aliivibrio fischeri , GMP Cíclico , Aliivibrio fischeri/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Celulosa/metabolismo , GMP Cíclico/metabolismo , Decapodiformes/microbiología , Regulación Bacteriana de la Expresión Génica , Simbiosis
12.
Biophys J ; 121(13): 2653-2662, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398019

RESUMEN

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to ∼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


Asunto(s)
Espacios Confinados , Natación , Aliivibrio fischeri/fisiología , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Simbiosis/fisiología
13.
mBio ; 13(2): e0308521, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404117

RESUMEN

Interbacterial competition is prevalent in host-associated microbiota, where it can shape community structure and function, impacting host health in both positive and negative ways. However, the factors that permit bacteria to discriminate among their various neighbors for targeted elimination of competitors remain elusive. We identified a putative lipoprotein (TasL) in Vibrio species that mediates cell-cell attachment with a subset of target strains, allowing inhibitors to target specific competitors for elimination. Here, we describe this putative lipoprotein, which is associated with the broadly distributed type VI secretion system (T6SS), by studying symbiotic Vibrio fischeri, which uses the T6SS to compete for colonization sites in their squid host. We demonstrate that TasL allows V. fischeri cells to restrict T6SS-dependent killing to certain genotypes by selectively integrating competitor cells into aggregates while excluding other cell types. TasL is also required for T6SS-dependent competition within juvenile squid, indicating that the adhesion factor is active in the host. Because TasL homologs are found in other host-associated bacterial species, this newly described cell-cell attachment mechanism has the potential to impact microbiome structure within diverse hosts. IMPORTANCE T6SSs are broadly distributed interbacterial weapons that share an evolutionary history with bacteriophage. Because the T6SS can be used to kill neighboring cells, it can impact the spatial distribution and biological function of both free-living and host-associated microbial communities. Like their phage relatives, T6SS+ cells must sufficiently bind competitor cells to deliver their toxic effector proteins through the syringe-like apparatus. Although phage use receptor-binding proteins (RBPs) and tail fibers to selectively bind prey cells, the biophysical properties that mediate this cell-cell contact for T6SS-mediated killing remain unknown. Here, we identified a large, predicted lipoprotein that is coordinately expressed with T6SS proteins and facilitates the contact that is necessary for the T6SS-dependent elimination of competitors in a natural host. Similar to phage RBPs and tail fibers, this lipoprotein is required for T6SS+ cells to discriminate between prey and nonprey cell types, revealing new insight into prey selection during T6SS-mediated competition.


Asunto(s)
Sistemas de Secreción Tipo VI , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Animales , Decapodiformes/microbiología , Lipoproteínas/genética , Simbiosis , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
14.
Cell Rep ; 38(7): 110376, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172163

RESUMEN

Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.


Asunto(s)
Bacteriófagos/fisiología , Decapodiformes/microbiología , Interacciones Huésped-Patógeno/fisiología , Modelos Biológicos , Simbiosis/fisiología , Aliivibrio fischeri/virología , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Mutación/genética , Plancton/metabolismo
15.
J Appl Microbiol ; 132(3): 1724-1737, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34724303

RESUMEN

AIMS: The Hawaiian Bobtail Squid (Euprymna scolopes) is a model organism for investigating host-symbiont relationships. The current scientific focus is on the microbiome within E. scolopes, while very little is known about the microbiome of the tanks housing E. scolopes. We examined the hypothesis that bacterial communities and geochemistry within the squid tank environment correlate with the production of viable paralarval squid. METHODS AND RESULTS: Total DNA was extracted from sediment and filtered water samples from 'productive' squid cohorts with high embryonic survival and paralarval hatching, 'unproductive' cohorts with low embryonic survival and paralarval hatching. As a control total DNA was extracted from environmental marine locations where E. scolopes is indigenous. Comparative analysis of the bacterial communities by the 16S rRNA gene was performed using next generation sequencing. Thirty-eight differentially abundant genera were identified in the adult tank waters. The majority of the sequences represented unclassified, candidate or novel genera. The characterized genera included Aquicella, Woeseia and Ferruginibacter, with Hyphomicrobium and Rhizohapis were found to be more abundant in productive adult tank water. In addition, nitrate and pH covaried with productive cohorts, explaining 67% of the bacterial populations. The lower abundance of nitrate-reducing bacteria in unproductive adult tank water could explain detected elevated nitrate levels. CONCLUSIONS: We conclude that microbiome composition and water geochemistry can negatively affect E. scolopes reproductive physiology in closed tank systems, ultimately impacting host-microbe research using these animals. SIGNIFICANCE AND IMPACT OF STUDY: These results identify the tight relationship between the microbiome and geochemistry to E. scolopes. From this study, it may be possible to design probiotic counter-measures to improve aquaculture conditions for E. scolopes.


Asunto(s)
Decapodiformes , Microbiota , Aliivibrio fischeri/genética , Animales , Acuicultura , Decapodiformes/genética , Decapodiformes/microbiología , Hawaii , ARN Ribosómico 16S/genética , Simbiosis
16.
Nat Rev Genet ; 23(1): 23-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389828

RESUMEN

Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.


Asunto(s)
Aliivibrio/genética , Artrópodos/genética , Decapodiformes/genética , Interacciones Microbiota-Huesped/genética , Simbiosis/genética , Wolbachia/genética , Aliivibrio/fisiología , Animales , Artrópodos/microbiología , Decapodiformes/microbiología , Flujo Génico , Flujo Genético , Modelos Genéticos , Filogenia , Selección Genética , Wolbachia/clasificación , Wolbachia/fisiología
17.
mBio ; 12(5): e0203421, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607467

RESUMEN

The marine bacterium Vibrio fischeri efficiently colonizes its symbiotic squid host, Euprymna scolopes, by producing a transient biofilm dependent on the symbiosis polysaccharide (SYP). In vitro, however, wild-type strain ES114 fails to form SYP-dependent biofilms. Instead, genetically engineered strains, such as those lacking the negative regulator BinK, have been developed to study this phenomenon. Historically, V. fischeri has been grown using LBS, a complex medium containing tryptone and yeast extract; supplementation with calcium is required to induce biofilm formation by a binK mutant. Here, through our discovery that yeast extract inhibits biofilm formation, we uncover signals and underlying mechanisms that control V. fischeri biofilm formation. In contrast to its inability to form a biofilm on unsupplemented LBS, a binK mutant formed cohesive, SYP-dependent colony biofilms on tTBS, modified LBS that lacks yeast extract. Moreover, wild-type strain ES114 became proficient to form cohesive, SYP-dependent biofilms when grown in tTBS supplemented with both calcium and the vitamin para-aminobenzoic acid (pABA); neither molecule alone was sufficient, indicating that this phenotype relies on coordinating two cues. pABA/calcium supplementation also inhibited bacterial motility. Consistent with these phenotypes, cells grown in tTBS with pABA/calcium were enriched in transcripts for biofilm-related genes and predicted diguanylate cyclases, which produce the second messenger cyclic-di-GMP (c-di-GMP). They also exhibited elevated levels of c-di-GMP, which was required for the observed phenotypes, as phosphodiesterase overproduction abrogated biofilm formation and partially rescued motility. This work thus provides insight into conditions, signals, and processes that promote biofilm formation by V. fischeri. IMPORTANCE Bacteria integrate environmental signals to regulate gene expression and protein production to adapt to their surroundings. One such behavioral adaptation is the formation of a biofilm, which can promote adherence and colonization and provide protection against antimicrobials. Identifying signals that trigger biofilm formation and the underlying mechanism(s) of action remain important and challenging areas of investigation. Here, we determined that yeast extract, commonly used for growth of bacteria in laboratory culture, inhibits biofilm formation by Vibrio fischeri, a model bacterium used for investigating host-relevant biofilm formation. Omitting yeast extract from the growth medium led to the identification of an unusual signal, the vitamin para-aminobenzoic acid (pABA), that when added together with calcium could induce biofilm formation. pABA increased the concentrations of the second messenger, c-di-GMP, which was necessary but not sufficient to induce biofilm formation. This work thus advances our understanding of signals and signal integration controlling bacterial biofilm formation.


Asunto(s)
Ácido 4-Aminobenzoico/metabolismo , Aliivibrio fischeri/metabolismo , Biopelículas , Calcio/metabolismo , GMP Cíclico/análogos & derivados , Polisacáridos Bacterianos/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crecimiento & desarrollo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Decapodiformes/microbiología , Decapodiformes/fisiología , Regulación Bacteriana de la Expresión Génica , Simbiosis
18.
Microbes Environ ; 36(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602537

RESUMEN

The accessory nidamental gland (ANG) is part of the reproduction organ in the majority of female cephalopods, including the bigfin reef squid Sepioteuthis lessoniana, an economically important fishery product. Microbes in Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia have been suggested to play a role in the maturation of the S. lessoniana ANG and are responsible for its color. However, the bacterial composition and dynamics of the different maturation stages of the ANG remain unclear. In the present study, we surveyed ANG-associated bacterial dynamics in wild-caught S. lessoniana at various developmental stages in different populations over 3 years. The results obtained showed that the ANG bacterial community shifted gradually and decreased in diversity throughout maturation. Verrucomicrobia occupied the ANG during the early stages in large numbers, and was replaced by Bacteroidia, Alphaproteobacteria, and Gammaproteobacteria in the later stages. Flavobacteriales and Alphaproteobacteria both appeared to contribute to pigmentation, while Bacteroidia, Alphaproteobacteria, and Gammaproteobacteria may be involved in enriching the heme biosynthesis pathway in the ANG with the maturation of S. lessoniana. The present results provide an open question of whether S. lessoniana actively selects the bacterial community in the ANG to adjust to its surrounding environment.


Asunto(s)
Estructuras Animales/microbiología , Bacterias , Decapodiformes , Animales , Bacterias/clasificación , Decapodiformes/crecimiento & desarrollo , Decapodiformes/microbiología , Femenino
19.
mBio ; 12(5): e0240221, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579565

RESUMEN

Microbes colonize the apical surfaces of polarized epithelia in nearly all animal taxa. In one example, the luminous bacterium Vibrio fischeri enters, grows to a dense population within, and persists for months inside, the light-emitting organ of the squid Euprymna scolopes. Crucial to the symbiont's success after entry is the ability to trigger the constriction of a host tissue region (the "bottleneck") at the entrance to the colonization site. Bottleneck constriction begins at about the same time as bioluminescence, which is induced in V. fischeri through an autoinduction process called quorum sensing. Here, we asked the following questions: (i) Are the quorum signals that induce symbiont bioluminescence also involved in triggering the constriction? (ii) Does improper signaling of constriction affect the normal maintenance of the symbiont population? We manipulated the presence of three factors, the two V. fischeri quorum signal synthases, AinS and LuxI, the transcriptional regulator LuxR, and light emission itself, and found that the major factor triggering and maintaining bottleneck constriction is an as yet unknown effector(s) regulated by LuxIR. Treating the animal with chemical inhibitors of actin polymerization reopened the bottlenecks, recapitulating the host's response to quorum-sensing defective symbionts, as well as suggesting that actin polymerization is the primary mechanism underlying constriction. Finally, we found that these host responses to the presence of symbionts changed as a function of tissue maturation. Taken together, this work broadens our concept of how quorum sensing can regulate host development, thereby allowing bacteria to maintain long-term tissue associations. IMPORTANCE Interbacterial signaling within a host-associated population can have profound effects on the behavior of the bacteria, for instance, in their production of virulence/colonization factors; in addition, such signaling can dictate the nature of the outcome for the host, in both pathogenic and beneficial associations. Using the monospecific squid-vibrio model of symbiosis, we examined how quorum-sensing regulation by the Vibrio fischeri population induces a biogeographic tissue phenotype that promotes the retention of this extracellular symbiont within the light organ of its host, Euprymna scolopes. Understanding the influence of bacterial symbionts on key sites of tissue architecture has implications for all horizontally transmitted symbioses, especially those that colonize an epithelial surface within the host.


Asunto(s)
Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Aliivibrio fischeri/química , Aliivibrio fischeri/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Decapodiformes/fisiología , Regulación Bacteriana de la Expresión Génica , Interacciones Microbiota-Huesped , Luminiscencia , Percepción de Quorum , Simbiosis
20.
Mol Microbiol ; 116(3): 926-942, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34212439

RESUMEN

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ-proteobacteria, V. fischeri fuels sulfur-dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate-import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate-assimilation genes, which is a phenotype associated with sulfur-starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Proteínas de Transporte de Membrana/genética , Sulfatos/metabolismo , Azufre/metabolismo , Simbiosis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Cisteína/metabolismo , Interacciones Microbiota-Huesped , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Mutación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...